Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №2 г.Шебекино Белгородской области»

Рассмотрена

на заседании школьного методического совета протокол № 1

«28» августа 2020 г.

Согласована

заместитель директора

Хаценович Ж.В.

«28» августа 2020 г.

Утверждаю

Директор школы

Карачаров С.Н.

Приказ № 139/ «28» августа 2020 г.

РАБОЧАЯ ПРОГРАММА

пофизике

на уровень среднего общегообразования (базовый уровень)

Сроки реализации программы: 2 года

Составитель:

Пенькова Ольга Викторовна, учитель математики, высшая категория

Пояснительная записка

Рабочая программа по физике на уровень среднего общего образования составлена в соответствии с федеральным государственным образовательным стандартом среднего общего образования, примерной основной образовательной программы среднего общего образования, на основе авторской программы программы Л.Э. Генденштейна, А.В. Кошкиной (Л.Э. Генденштейн, А.В. Кошкина, М.: Мнемозина, 2015).

Планируемые предметные результаты освоения учебного предмета

Личностные:

- сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологии для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
- формирование ценностных отношений друг у друга, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметные:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов и явлений;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать поученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды, вести дискуссию.

Предметные:

- знание о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты изменений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешности результатов измерений;
- умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
- умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
- формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;
- развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов м теоретических моделей физические законы;
- коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации

В результате изучения учебного предмета «Физика» на базовом уровне среднего общего образования

выпускник научится:

- демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
- демонстрировать на примерах взаимосвязь между физикой и другими естественными науками;
- устанавливать взаимосвязь естественно-научных явлений и применять основные физические модели для их описания и объяснения;
- использовать информацию физического содержания при решении учебных, практических, проектных и исследовательских задач, интегрируя информацию из различных источников и критически ее оценивая;
- различать и уметь использовать в учебно-исследовательской деятельности методы научного познания (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы, моделирование и др.) и формы научного познания (факты, законы, теории), демонстрируя на примерах их роль и место в научном познании;
- проводить прямые и косвенные изменения физических величин, выбирая измерительные приборы с учетом необходимой точности измерений, планировать ход измерений, получать значение измеряемой величины и оценивать относительную погрешность по заданным формулам;

- проводить исследования зависимостей между физическими величинами: проводить измерения и определять на основе исследования значение параметров, характеризующих данную зависимость между величинами, и делать вывод с учетом погрешности измерений;
- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учетом границ их применимости;
- решать качественные задачи (в том числе и межпредметного характера): используя модели, физические величины и законы, выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса (явления);
- решать расчетные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для ее решения, проводить расчеты и проверять полученный результат;
- учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;
- использовать информацию и применять знания о принципах работы и основных характеристикахизученных машин, приборов и других технических устройств для решения практических, учебно-исследовательских и проектных задач;
- использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

Выпускник на базовом уровне получит возможность научиться:

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
 - самостоятельно планировать и проводить физические эксперименты;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и роль физики в решении этих проблем;
- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

Содержание учебного предмета

10 класс (68 часов, 2 часа в неделю)

Методы научного познания и физическая картина мира (1 час)

Функции и взаимосвязь эксперимента и теории в процессе познания природы. Моделирование явлений и объектов природы. Научные гипотезы. Роль математики в физике. Физические законы и причины существования границ их применимости. Принцип соответствия. Физическая картина мира.

МЕХАНИКА (35 часов)

Кинематика (15 часов)

Система отсчёта. Материальная точка. Траектория, путь, перемещение. Прямолинейное равномерное движение. Относительность движения, сложение скоростей. Мгновенная и средняя скорость. Прямолинейное равноускоренное движение. Нахождение пути по графику зависимости скорости от времени. Путьи перемещение при прямолинейном равноускоренном движении, соотношение между путём и скоростью. Свободное падение. Движение тела, брошенного вертикально вверх. Основные характеристики равномерного движения по окружности, ускорение искорость при равномерном движении по окружности, угловая скорость.

Динамика (10 часов)

Законы Ньютона. Закон всемирного тяготения. Силы тяжести, упругости, трения. Вес и невесомость. Тело на наклонной плоскости. Динамика равномерного движения по окружности.

Законы сохранения в механике (9 часов)

Импульс, закон сохранения импульса. Реактивное движение, освоение космоса. Механическая работа. Мощность. Кинетическая энергия. Потенциальная энергия. Закон сохранения энергии в механике.

Статика (1 час)

Условия равновесия тела. Виды равновесия. Момент силы. Правило моментов.

МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕПЛОВЫЕ ЯВЛЕНИЯ (15 часов)

Молекулярная физика. Тепловые явления (15 часов)

Строение вещества. Идеальный газ. Абсолютная температура. Изобарный, изохорный и изотермический процессы. Уравнение Клапейрона. Количество вещества. Уравнение состояния идеального газа (уравнение Менделеева — Клапейрона). Основное уравнение молекулярно-кинетической теории. Связь между абсолютной температурой и средней кинетической энергией молекул. Скорость молекул. Внутренняя энергия газа и способы её изменения. первый закон термодинамики. Применение первого закона термодинамики к газовым процессам. Адиабатный процесс. Принцип действия и КПД теплового двигателя. Второй закон термодинамики. Насыщенный и ненасыщенный пар. Кипение. Влажность воздуха. Количество теплоты.

ЭЛЕКТРОСТАТИКА. ПОСТОЯННЫЙ ТОК (14 часов)

Электростатика (6 часов)

Электрический взаимодействия. Закон сохранения электрического заряда. Закон Кулона. Напряжённость электрического поля. Принцип суперпозиции электрических полей. Проводники и диэлектрики в электрическом поле. Работа электрического поля. Разность потенциалов. Напряжение. Связь напряжения с напряжённостью электрического поля. Электроёмкость. Конденсатор. Энергия электрического поля. Постоянный электрический ток (8 часов)

Закон Ома для участка цепи. Последовательное и параллельное соединение проводников. Работа и мощность тока. Электродвижущая сила источника тока. Закон Ома для полной цепи. Электрический ток в различных средах.

ОБОБЩАЮЩЕЕ ПОВТОРЕНИЕ (2 часа) РЕЗЕРВ УЧЕБНОГО ВРЕМЕНИ (1 час)

11 класс (68 часов, 2 часа в неделю) ЭЛЕКТРОДИНАМИКА (10 часов)

Магнитное поле (4 часа)

Взаимодействие магнитов. Взаимодействие между проводниками с током и магнитами. Взаимодействие проводников с током. Магнитные свойства вещества. Магнитное поле. Магнитная индукция. Действие магнитного поля на проводник с током и на движущиеся заряженные частицы.

Электромагнитная индукция (6 часов)

Явление электромагнитной индукции. Магнитный поток. Правило Ленца. Закон электромагнитной индукции. Вихревое электрическое поле. Самоиндукция. Индуктивность. Энергия магнитного поля.

КОЛЕБАНИЯ И ВОЛНЫ (11 часов)

Колебания (6 часов)

Свободные механические колебания. Амплитуда, период, частота и фаза колебаний. Периоды математического и пружинного маятников. Гармонические колебания. Вынужденные колебания. Резонанс. Свободные колебания в колебательном контуре. Период свободных электромагнитных колебаний. Вынужденные электромагнитные колебания. Переменный электрический ток. Действующие значения силы тока и напряжения. Генерирование электроэнергии. Производство, передача и потребление электроэнергии. Трансформатор.

Волны (5 часов)

Механические волны. Продольные и поперечные волны. Частота волны, период волны, длина волны, скорость распространения волны. Электромагнитные волны. Теория Максвелла. Опыты Герца. Давление света. Передача информации с помощью электромагнитных волн. Изобретение радио и принципы радиосвязи. Генерирование и излучение радиоволн. Автоколебания. Передача и приём радиоволн. Современные средства связи, Интернет.

ОПТИКА (15 часов)

Геометрическая оптика(7 часов)

Прямолинейное распространение света. Отражение и преломление света. Линзы. Построение изображений в линзах. Глаз и оптические приборы.

Волновая оптика (8 часов)

Световые волны. Интерференция света. Дифракция света. Дифракционная решётка. Дисперсия света. Окраска предметов. Инфракрасное излучение. Ультрафиолетовое излучение. Поперечность световых волн. Поляризация света. Соотношение между волновой и геометрической оптикой.

ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ (2 часа)

Элементы теории относительности (2 часа)

Основные положения специальной теории относительности. Некоторые следствия специальной теории относительности. Относительность одновременности.

Относительность промежутков времени. Энергия тела. Энергия покоя. Связь полной энергии с массой тела.

КВАНТОВАЯ ФИЗИКА (16 часов)

Кванты и атомы (7 часов)

Гипотеза Планка. Фотоэффект. Теория фотоэффекта. Применение фотоэффекта. Строение атома. Опыт Резерфорда. Планетарная модель атома. Постулаты Бора. Атомные спектры. Спектральный анализ. Энергетические уровни. Спонтанное и вынужденное излучение. Лазеры. Применение лазеров. Корпускулярно-волновой дуализм. Вероятностный характер атомных процессов. Соответствие между классической и квантовой механикой.

Атомное ядро и элементарные частицы (9 часов)

Строение атомного ядра. Ядерные силы. Радиоактивность. Радиоактивные превращения. Ядерные реакции. Энергия связи атомных ядер. Реакция синтеза и деления ядер. Ядерная энергетика. Цепные ядерные реакции. Ядерный реактор. Принцип действия атомной электростанции. Перспективы и проблемы ядерной энергетики. Влияние радиации на живые организмы.

Мир элементарных частиц. Открытие новых частиц. Классификация элементарных частиц. Фундаментальные частицы и фундаментальные взаимодействия.

АСТРОНОМИЯ И АСТРОФИЗИКА (8 часов)

Солнечная система (3 часа)

Размеры Солнечной системы. Солнце. Источник энергии Солнца. Строение Солнца. Природа тел Солнечной системы. Планеты земной группы. Планеты-гиганты. Малые тела Солнечной системы. Происхождение Солнечной системы.

Звёзды, галактики, Вселенная (5 часов)

Разнообразие звёзд. Расстояния до звёзд. Светимость и температура звёзд. Судьбы звёзд. Эволюция звёзд разной массы. Наша Галактика - Млечный Путь. Другие галактики. Происхождение и эволюция Вселенной. Разбегание галактик. Большой взрыв.

ИТОГОВОЕ ОБОБЩЕНИЕ (3 часа)

РЕЗЕРВ УЧЕБНОГО ВРЕМЕНИ (3 часа)

Тематическое планирование

10 класс

Тема	Количество часов	Лабораторные работы	Контрольные работы
Методы научного познания и	1		
физическая картина мира.			
Механика.	35		
1. Кинематика	15	№ 1	№ 1
2. Динамика	10	№ 2, 3	№2
3. Законы сохранения в механике	9	№4	№3
4. Статика	1		
Молекулярная физика. Тепловые	15		
явления.			
5. Молекулярная физика. Тепловые		№5,6,7	№4
явления.			
Электростатика. Постоянный ток.	14		

6. Электростатика	6		
7. Постоянный ток	8	№8	№5
Обобщающее повторение	2		№6
Резерв времени	1		
Итого	68	8	6

11класс

Тема	Количество	Лабораторные	Контрольные
	часов	работы	работы
Электродинамика	10		
1. Магнитное поле	4	№ 1	
2. Электромагнитная индукция	6	№2	№ 1
Колебания и волны	11		
3. Колебания	6	№3	
4. Волны	5		№2
Оптика	15		
5. Геометрическая оптика	7	№4	
6. Волновая оптика	8	№5	№3
Теория относительности	2		
7. Элементы теории относительности	2		
Квантовая физика	16		
8. Кванты и атомы	7	№6	
9. Атомное ядро и элементарные частицы	9	<i>№</i> 7,8	№4
Астрономия и астрофизика	8		
10. Солнечная система	3		
11. Звёзды, галактики, Вселенная	5		
Итоговое обобщение	3		№5
Резерв времени	3		
Итого	68	8	5